આપેલ વિધાનને ધ્યાનથી જુઓ:
$P$: “સુમન હોશિયાર છે.” $Q$: “સુમન અમીર છે.” $R$: “સુમન પ્રમાણિક છે.” તો “જો સુમન એ અમીર હોય તો અને માત્ર તોજ સુમન એ હોશિયાર અને અપ્રમાણિક હોય. ” આપેલ વિધાનનુ નિષેધ કરો.
$\; \sim \left( {{\rm{Q}} \leftrightarrow \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right)} \right)$
$ \sim {\rm{Q}} \leftrightarrow {\rm{\;}} \sim {\rm{P}} \wedge {\rm{R}}$
${\rm{\;}} \sim \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right) \leftrightarrow Q$
$\; \sim P \wedge \left( {{\rm{Q\;}} \leftrightarrow \sim {\rm{R}}} \right)$
વિધાન "$'96$ એ $2$ અને $3'$ વડે વિભાજ્ય છે" નું નિષેધ વિધાન મેળવો.
‘‘જો હું શિક્ષક બનું તો હું શાળા ખોલીશ’’ વિધાનનું નિષેધ
દ્રી-પ્રેરણ $p \Leftrightarrow q = …..$
$(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$નું નિષેધ $..........$ છે.
$((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ નિત્યસત્ય થાય તેવા $r \in\{p, q, \sim p , \sim q \}$ ના મુલ્યોની સંખ્યા $..............$ છે.